Accurate refinement of docked protein complexes using evolutionary information and deep learning
نویسندگان
چکیده
One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein-protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures.
منابع مشابه
An Evolutionary conservation-Based Method for Refining and Reranking protein Complex Structures
Detection of protein complexes and their structures is crucial for understanding their role in the basic biology of organisms. Computational docking methods can provide researchers with a good starting point for the analysis of protein complexes. However, these methods are often not accurate and their results need to be further refined to improve interface packing. In this paper, we introduce a...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملClassification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques
Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...
متن کاملMyocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods
Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...
متن کاملGEMDOCK: a generic evolutionary method for molecular docking.
We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bioinformatics and computational biology
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2016